FORECASTING DATA RUNTUN WAKTU MUSIMAN MENGGUNAKAN METODE SINGULAR SPECTRUM ANALYSIS (SSA)
نویسندگان
چکیده
منابع مشابه
Forecasting U.S. Tourist Arrivals using Singular Spectrum
5 This paper introduces Singular Spectrum Analysis (SSA) for tourism demand forecasting 6 via an application into total monthly U.S. Tourist arrivals from 1996-2012. The global 7 tourism industry is today, a key driver of foreign exchange inflows to an economy. Here, we 8 compare the forecasting results from SSA with those from ARIMA, Exponential Smoothing 9 (ETS) and Neural Networks (NN). We f...
متن کاملPenambahan emosi menggunakan metode manipulasi prosodi untuk sistem text to speech bahasa Indonesia
Abstrak—Text To Speech (TTS) merupakan suatu sistem yang dapat mengonversi teks dalam format suatu bahasa menjadi ucapan sesuai dengan pembacaan teks dalam bahasa yang digunakan. Fokus penelitian yaitu suatu konsep pengucapan natural, dengan usaha “memanusiakan” pelafalan sintesa suara sistem Text To Speech yang dihasilkan. Kebutuhan utama yang digunakan untuk sistem Text To Speech dalam peneli...
متن کاملPredicting the Brexit outcome using singular spectrum analysis
In a referendum conducted in the United Kingdom (UK) on June 23, 2016, $51.6\%$ of the participants voted to leave the European Union (EU). The outcome of this referendum had major policy and financial impact for both UK and EU, and was seen as a surprise because the predictions consistently indicate that the ``Remain'''' would get a majority. In this paper, we investigate whether the outcome o...
متن کاملData-adaptive wavelets and multi-scale singular-spectrum analysis
Using multi-scale ideas from wavelet analysis, we extend singular-spectrum analysis (SSA) to the study of nonstationary time series, including the case where intermittency gives rise to the divergence of their variance. The wavelet transform resembles a local Fourier transform within a finite moving window whose widthW , proportional to the major period of interest, is varied to explore a broad...
متن کاملGap filling of solar wind data by singular spectrum analysis
[1] Observational data sets in space physics often contain instrumental and sampling errors, as well as large gaps. This is both an obstacle and an incentive for research, since continuous data sets are typically needed for model formulation and validation. For example, the latest global empirical models of Earth’s magnetic field are crucial for many space weather applications, and require time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Teorema: Teori dan Riset Matematika
سال: 2020
ISSN: 2597-7237,2541-0660
DOI: 10.25157/teorema.v5i1.3286